


What is a Mathematical Proof? 
I suppose most readers know what a mathematical proof is. Let's 

say we wish to know if the mathematical statement "If p then c(' holds. 

The process of determining the truth or falsehood of this statement 

using only (i) fundamental concepts (definitions), (ii) fundamental 

hypotheses (axioms), (iii) previously established results (theorems), and 

(iv) logically correct inference is called a mathematical proof. 

Proposition 4 7 in Book I of Euclid's Elements reads: "In right-angled 

triangles the square on the side subtending the right angle is equal to 

the sum of the squares on the sides containing the right angle." 4-'fhis 

ancient and important result, too well known to the readers to warrant a 

proof here, did intrigue a famous 17th century English philosopher. At 

the age of 40 and never having studied geometry before, Hobbes was 

said to have come across this theorem quite by chance in his friend's 

study. His curiosity urged him to read on to the proof. The proof, however, 

quoted a previous theorem whose proof in turn quoted a previous 

theorem and so on. After several hours' work, he was finally convinced 

of the truth of Proposition 4 7, and thus started his life-long love for 

geometry. 

Alas, those like Hobbes who love mathematics for its logical 

reasoning are a rare breed; rather, most shy away from the subject 

because they perceive it as all logical deductions and tedious calculations. 

Nevertheless, whether you love or hate mathematics, you would probably 

agree with Hobbes that a mathematical proof starts with certain basic 

assumptions or axioms and arrives at the conclusion through a series of 

logically correct deductions. Some people even equate mathematics 

with proofs. But is there more to mathematics than proofs? 

Thus Spake the Philosophers 

In many ways, the mathematical proof was thrust onto centrestage as a 

result of a crisis in the foundations of mathematics in the early part of 

the 20th century, in particular under the strong influence of logicism 

and formalism. To cut a long story short, let me just produce a few 

relevant quotes: 

Mathematics in its widest significance is the development of all types 

of formal, necessary, deductive reasoning.- A. N. Whitehead (1898) 

Pure mathematics is the class of all propositions of the form 'p 

implies q' where p and q are propositions. - B. Russell ( 1903) 

Mathematics is the motley of techniques of proof. - L. Wittgenstein 
(1956) 

Mathematics is the science of making necessary conclusions. - B. 

Peirce (1881) 

• 
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Perhaps it would be fairer to point out that the centre of the 

philosophical debate was really the consistency of mathematics as an 

academic discipline, and not a battle of personal views on the nature of 

mathematics as an intellectual activity. Nevertheless, this philosophical 

debate seemed to have exerted influence that far exceeded its original 

intention and, by focusing on the mathematical proof, scrutinizing its 

nature and dissecting its structure, shaped the general opinion that the 

main job of a mathematician is to prove theorems, and proving theorems 

is an exercise in logic. 

To say that a mathematician's job is to prove theorems is akin to 

saying that a writer's job is to construct sentences, a composer's job is 

to assemble notes and an artist's job is to draw and colour. Hence, Li 
Bai's poems would just be a compilation of phrases, Beethoven's 

symphonies a mere ensemble of notes, and Qi Baishi's paintings an 

arrangement of lines! If literature, music and art are capable of expressing 

ideas and emotions, why can't mathematics have its own sense of 

aesthetics? Acknowledging that perception of aesthetics is an individual 

experience, I have no intention of pursuing a discourse on this aspect. 

What I would like to discuss, rather, is whether, as an intellectual activity, 

"Mathematics = Proof" is a fair statement. 

Did Euclid Discover Pythagoras' Theorem? 

Let us go back to Euclid's Proposition 4 7 (Pythagoras' Theorem). 

The proof presented in the Blements seems to be the first recorded in 

history. But does that mean that people did not know Pythagoras' 

Theorem before then (4th century BC)? 
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In the Columbia University Museum lies a clay tablet named Plimton 

322 which dates from the Babylonian era of 19 centuries BC, 1500 

years before Euclid. In the 1943 catalogue of the Museum, this clay 

tablet, on which a few lines of numbers were inscribed (see Figure 1 

above), was classified as "commercial account". Two years later, two 

prominent historians of mathematics Neugebauer and Sachs made the 

following startling discovery: The content of Plimton 322 is a list of 

Pythagorean triplets, i.e., triplets of positive integers {h,b,d} such that 

h 2 + b 2 = cP . Actually, the list only contains the values of b and d, 

without h. However, the values of (d 1 h)2 are given in the leftmost column. 

What is more, adjacent numbers in this leftmost column differ by about 

0.03. Look at the fourth line for the Pythagorean triplet 

{13500,12709,18541}. Do you really think the ancient Babylonians were 

ignorant of Pythagoras' Theorem and just stumbled upon these triplets? 

Refer also to the ancient Chinese text Zhoubi Suanjing (c. 1st 

century BC). There is a passage that gives the following proof of 

Pythagoras' Theorem: Rotate the given right-angled triangle (ABC) about 

the centre of the square on the hypotenuse to form triangles FCY, OYX 

and BXB as in the diagram (Figure 2). 

Then, it is easy to see that 

0 AFGE = 0 CDNF + 0 BEMD + 2 0 ABDC, 

and 

0 AFGE = 0 BXYC + 4 Li ABC. 

From this, one sees that the area of the square on the hypotenuse 

(BC) is the sum of the areas of the squares on the other two sides 

(AB and CA) of the right-angled triangle (ABC). 5 

During the time of the Three Kingdoms (c. 3rd century AD) in China, 

the Wu mathematician Zhao Shuang provided a similar proof in his 

annotation of Zhoubi Suanjing (Figure 3a). Another similar idea was 

proposed by the 12th century Indian mathematician Bhaskara (Figure 

3b). It is amusing to note that, besides the diagram, Bhaskara's proof 

consists only of a single exclamation: "Behold!" These proofs are all 

different from the one in the Blements. 

Thus, we can see that the content of Pythagoras' Theorem neither 

started nor ended with Euclid's proof. On the contrary, it is after a 

statement has been thoroughly understood that a rigorous proof can be 

found. This has manifested repeatedly in the history of mathematics, 

the development of calculus being a typical example. 6 The 19th century 

English mathematician de Morgan said thus: "The moving power of 

mathematical invention is not reasoning but imagination." 
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6 Editor's Note: The reader may refer 
to Prof Siu' s articles "The Story of 
Calculus (I and II) ", Mathematical 
Medley Volume 23 No. l and 2 ( 1996).} 



~~~When Do You Believe a Mathematical Statement? 
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No doubt, some mathematical statements are "self-evident". For 

example: perpendiculars dropped from two vertices of a triangle meet 

at a point; the sum of squares of two real numbers is nonnegative; 

opposite angles (formed by two intersecting straight lines) are equal; 

two lines that are each parallel to a third straight line are themselves 

parallel to each other. And then, there are statements whose validity is 

not quite as obvious but are nonetheless convincing upon sufficient 

observation and experimentation. Examples of this class: perpendiculars 

dropped from the three vertices of a triangle are concurrent; the sum of 

squares of two real numbers is not less than twice the product of the 

two numbers. Also, there are statements that appear to be abstract, but 

are believable by virtue of a physical interpretation. An example is: if 

the derivative of a function is everywhere zero, then the function is a 

constant. The physical interpretation of this statement is that a particle 

with zero velocity stays put! Alas, there are statements that do not belong 

to any of the above three classes. How are we to be convinced of them 

if not for proofs? 

When we trace a sophisticated theorem to its origin, we often find 

its formulation to have been prompted by certain "circumstantial 

evidences" which render such a result plausible. Let me illustrate this 

with an example. Prime numbers seem to appear rather haphazardly. 

You may wonder: Between any two numbers a and b, which numbers 

are prime? How many of them are there? How far apart do they appear? 

Let us consider the following observations: Between 0 and 99 ( 1 00 

numbers), there are 25 prime numbers of which eight pairs differ by 

only 2 in value; between 9,999,900 and 10,000,000 (also 100 numbers), 

there are 9 prime numbers of which two pairs differ by only 2 in value; 

but between 10,000,000 and 10,000,100 (again 100 numbers), there 

are only 2 primes and their difference is 60. What appears to be totally 

chaotic turns out to possess some order after aiL and this was observed 

by some 18th and 19th century mathematicians such as Legendre and 

Gauss. Let us observe the following table in which n(N) denotes the 

number of prime numbers between 1 and N: 
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Note that the right-most column gives the density of prime numbers. 

Multiply these numbers by L2,3, ... respectively, i.e., log N, we will get a 

list of numbers converging to a number c between 0.4 and 0.5. Thus, 

n(N) N 
-- xlogN- c or n(N) - c x --. 

N ' log N 

In fact, c = log e where e = 2. 71828 ... is nothing else but the base 

of the natural logarithm. Thus, 

N 
n(N)---. 

log. N 

This relationship7 was finally proved at the end of the 19th century 

and was known as the Prime Number Theorem. Thus, the global 

distribution of prime numbers follows a simple and elegant rule even 

though their local distribution is poorly understood. 

Let us push this one step further and suppose that the local 

distribution of primes is random subject to the Prime Number Theorem. 

That is to say, let us hypothesize that whether a number is prime or not 

is determined by the toss of a coin that is loaded in such a way that, 

when tossed N times, the probability of head is 1/loge N. Then, when 

head appears at the kth toss among N tosses, k will be a prime number. 

(I beg the readers' indulgence in this ridiculous model and urge them to 

read on.) 

Now, removing the number 2, all other prime numbers are odd 

and differ from the closest prime by at least 2. A pair of primes that 

differ by 2 is called twin primes, examples are 3 and 5, 5 and 7, 11 and 

13, etc. There is a famous conjecture regarding twin primes, which is 

that there are infinitely many of them (a consequence of this would be 

that large prime numbers need not be far apart). Let us investigate this 

using the coin-toss model outlined above. To be more specific, we ask 

the question: What is the probability that two numbers k and k + 2 

between 1 and N be primes, i.e., that heads appear at the kth and 

(k + 2)th tosses of the coin? A rough calculation shows that that probability 

is (1/loge N)2
, and hence, we expect to have Nj(loge N) 2 twin primes 

between 1 and N. Without going into details, we simply mention that 

actually tossing head at the kth and (k + 2)th times are not really 

independent events, and thus a more accurate answer should be 

(1.32 ... )xN 

(log, N) 2 

(*) 

twin primes between 1 and N. The following table shows that this is in 

fact quite close to the actual answer. 

7 Translator's Note: The symbol "-" 
means that the left hand side and the 
right hand side get closer and closer 
to each other as N gets larger and 
larger. 
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1010
- 10 10 + 150,000 389 374 

1011
- 1011 + 150,000 276 309 

1012
- 1012 + 150,000 276 259 

1013
- 1013 + 150,000 208 221 

10 14
- 10 14 + 150,000 186 191 

1015
- 1015 + 150,000 161 166 

Considering how ridiculous the coin-toss model is, this coincidence 

is shocking! Could the formula (*) really give the correct (asymptotic) 

distribution of twin primes? (If so, the Twin Prime Conjecture would be 

settled.) The "circumstantial evidence" given above is certainly in its 

favour. However, no mathematician would accept that it is a proof. 

Why Do We Still Need Proofs? 

Not only the layperson, even other scientists fail to appreciate 

why mathematicians take mathematical proofs so seriously. When his 

assistant the young mathematician tlarish-Chandra told Dirac that he 

was troubled as he could not find the proof even though he was sure his 

answer was correct, the eminent English physicist said: "I don't care 

about proofs, I want to know the truth!" 

Most "circumstantial evidences" belong to one of the following 

B '""'"'"----tir--~-_..;1+--__::::::::.~C categories: geometric observation, inductive evidence, and analogy. Let 
us look at these one by one. 
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First, geometric observation. In 1908, Klein put forward the 

following widely quoted example in which he "proved" that every triangle 

was isosceles! It goes as follows: For a triangle ABC, let D be the midpoint 

of the side BC and let the bisector of L. BAC intersect the perpendicular 

bisector of the side BC at 0. From 0, drop perpendiculars to the sides 

AB and AC, meeting them at E and F respectively (Figure 6a). Then, from 

the congruence of the pairs of triangles AOE, AOF and BOD, COD, one 

can easily deduce that the pair BOE, COF are also congruent. It follows 

that AE = AF, BE = CF, and hence ABC is isosceles. Some of you may 

argue that the point 0 may lie outside ABC, but a similar argument 

seems to go through even in that case (see Figure 6b). So what went 

wrong? I am sure the careful reader can spot it by drawing an accurate 

diagram. We note, however, the obvious shortcomings of relying on 

accurate diagrams. As an axiomatic subject in which theorems are 

obtained through deductive reasoning, Euclidean geometry calls for 

accurate logical arguments supplemented by rough diagrams (to aid 

our intuition), rather than rough explanations (based on intuition) 



supplementing accurate diagrams. This example shows that the precision 

and logic associated with Euclidean geometry have their rightful place 

in establishing mathematical statements. 

Next, let us look at inductive evidence. Consider the following 

question: for y;t: 0, can 1+1141y be a perfect square? This is the same 

as asking whether the equation x2
- 1141y = 1 has an integer solution. 

This equation was studied by Fermat in the 17th century, but somehow 

Euler mistakenly attributed it to the English mathematician Pell. The 

name Pell's equation has since stuck with equations of this type. Perhaps 

you are patient enough to try every integer from y = 1 to y = 1 0 7
, but still 

you will not find a solution. However, mathematicians have proved that 

not only do solutions exist, there are in fact an infinite number of them. 

The smallest y appearing in a solution happens to be 

30,693,385,322,765,657,197,397,208 which is about 3x1025 ! The 

corresponding xis 1,036,782, 394,157,223,963,237,125,215 which 

is about 1027
• 

Finally, let us look at analogy. In the 3rd century BC, Archimedes 

proved the area formula for an ellipse: A = nab, where a and b are the 

semi-major and semi-minor axis respectively. If a= b = r, this reduces to 

the well-known formula for the area of a circle, namely, A = n r. Now, 

consider the square whose sides are tangential to the circle. The ratio of 

the area of the circle to that of its tangential square is n: 4, and this ratio 

happens to coincide with that of the perimeters of the circle and the 

square. So, by analogy, it seems perfectly reasonable to guess that, as 

the ratio of the area of an ellipse to that of its tangential rectangle is 

n: 4, it should also be equal to the ratio between their perimeters. In 

this case, since the perimeter of the rectangle is 4(a + b), the perimeter 

of the ellipse would be 

n x 4(a+b)=n(a+b). 
4 

(Note that when a = b = r, this reduces to the correct formula for 

the perimeter of a circle.) Indeed the 13th century Italian mathematician 

Fibonacci did propose this formula, which of course we now know is 

wrong. As a matter of fact, the perimeter of an ellipse is neither simple 

to compute nor expressible in closed form and has eluded the grasp of 

mathematicians until the late 19th century. 

But How Reliable Are Proofs? 

University of California at Berkeley professor Berlekamp's book 

Algebraic Coding Theory is a classic reference in the field and has been 

translated into many languages. In the preface, he promised to pay US$1 

to anyone who pointed out a mistake, large or smalL for the first time. I 

first read this book in the winter of 1978 and discovered that one of the 

proofs in chapter 4 contained an error, which I rectified, and notified 

the author. He wrote back half a month later, and said, as I had expected, 

that the dollar had already been claimed 9 years ago. In the letter he 



8 Translator's Note: The problem asks 
whether every map drawn on the 
plane can be coloured using only 4 
colours. 

also appended a list of corrigenda that ran 13 pages long and contained 

some 250 items. He also said that he was still paying 3-4 dollars every 

year after all these years. Yet, this in no way diminishes the merit of the 

book! 

The following sensational news was reported in a 1945 issue of 

Time magazine: The American mathematician Rademacher had 

announced a solution to one of the most famous of all mathematical 

problems - the Riemann Hypothesis. In the spring of 1986, the New 

York Times reported with quite a bit of fanfare that the English 

mathematician Rourke and his Portugese colleague Rego had solved yet 

another famous problem - the Poincare Conjecture. Again, the March 

1988 issue of Time magazine reported that the Japanese mathematician 

Miyaoka had achieved the ultimate- proving Fermat's Last Theorem. All 

these proofs, however, were later discovered to contain irreparable flaws; 

even today, all these problems remain unsolved (Translator's Note: 

Fermat's Last Theorem has since been proved by Wiles and Taylor in 

1995). Yet, no one slights these mathematicians for their mistakes, which 

may in fact contribute positively to the eventual solutions of these 

problems. 

Such examples abound in the history of mathematics. Take 

Fermat's Last Theorem. The erroneous report the French mathematician 

Lame made to the Paris Academy of Science on 1 March 184 7 had an 

important influence on the development of number theory. Take also 

the Four Colour Problem8 posed in 1878 by the English mathematician 

Cayley (the problem in fact originated with a young man named Guthrie 

in 1852 and was brought to the public's attention by the English 

mathematician de Morgan). In 1879, the Englishman Kempe, a lawyer 

by training, proposed a solution, only to be invalidated by his compatriot 

Heawood 11 years later. Kempe's (erroneous) solution, however, provided 

the basis for subsequent research on this problem. In fact, its final 

positive resolution in 1976 was based on Kempe's approach. This final 

solution, which included 1200 hours of machine computation, raised 

another controversy: Can a computer proof be accepted as a 

mathematical proof? 

I have heard on the grapevine (unconfirmed, of course), that, 

according to one editor of the Mathematical Reviews, almost half of all 

published proofs are wrong, even though the theorems are correct! 

Who Checks the Proofs? 

In principle, there exists a system by which all mathematical 

concepts and theories can be put into formal or symbolic representation. 

For example, 1 + 1 = 2 has the representation 

= (+(s(O), s(O), s(s(O) ))). 



In this system, all proofs appear as a finite sequence of such formal 

statements. Then, the validation of a proof reduces to checking whether 

this sequence follows the syntax of the formal system, and can be 

accomplished mechanically, quite devoid of human involvement. This 

was indeed the grand scheme proposed by Hilbert in the 1920's and 

30's, in the hope that this would settle once and for all the question of 

the consistency of mathematics. 

Does this grand scheme of formalism really work? A student of 

the Polish mathematician Steinhaus was supposed to have written down 

a proof of the Pythagoras theorem using the system found in Hilbert's 

Foundations of Geometry. The proof filled 80 pages! Tedium 

notwithstanding, the fatal blow came in 1931 when the Austrian 

mathematician Godel published the following two earth-shattering 

theorems: 

1. Any formal system that is compatible with arithmetic is 

incomplete, i.e., there are statements within the system that 

cannot be proved or disproved by the system. 

2. Any formal system that is compatible with arithmetic cannot 

establish its own consistency. 

How Do Mathematicians Work, Really? 

Do most mathematicians work within a formal system? Not really. 

Actually, most of the time they only provide the main points of their 

arguments in a proof. Of course, their writing contains a multitude of 

symbols and formulae, but they are just shorthand notations, and 

basically have nothing to do with the kind of formal system that we have 

been discussing. In fact, "devoid of human involvement" is just about 

the furthest from the truth about their work. Proofs are written by humans, 

studied by humans, and judged by humans. 

There are, however, some proofs whose length and complexity 

challenge the most patient and meticulous. The classification of finite 

groups is a good example. The problem, which originated around 1890, 

asks how many distinct groups of order N there are. It took the collective 

efforts of numerous mathematicians, producing well over 5000 pages 

of work over a century, to solve. It is doubtful whether anyone has really 

scrutinized these 5000 over pages in entirety! 

In the last couple of decades, "computer proofs" have begun to 

appear. The earliest famous example was the proof of the Four Colour 

Problem in 1976 by the American mathematicians Haken and Appel we 

mentioned earlier. Assisted by Koch, they used 1200 hours of computer 

time to complete the proof. More recently, in the winter of 1988, a team 

at Concordia University in Canada, led by Clement Lam, proved the 

non-existence of finite projective planes of order 10. Using a CRAY-1A 

supercomputer from the US Institute of Defense Analyses (IDA) as well 

• 



as VAX machines at Concordia, they spent three years to chalk up a 

total of over 2000 hours of computer time to complete the proof. No 

one could guarantee that no mistake had been made, and, if a mistake 

was indeed made, it would be difficult to pinpoint whether it was a 

machine fault or a mathematical error. 

What Good is a Mathematical Proof?! 

So what do we have now? We seem to have said that some 

mathematical statements are self-evident and require no proof, while 

others may be "proved" but cannot be trusted! In any case, by Godel's 

incompleteness theorem, mathematics can never establish its own 

consistency! It seems that now we have completely depleted the readers 

of their respect for mathematics! 

Of course, what we have mentioned are some extreme cases. 

Proofs are still of great importance in the verification of mathematical 

results. The famous mathematican H. Weyl said: "Logic is the hygiene 

which the mathematician practices to keep his ideas healthy and strong." 

Another famous mathematician A. Weil said: "Rigour is to the 

mathematician what morality is to man." 

Possibly more important than the verification purpose, 

mathematical proofs provide insight and enhance understanding. In a 

1950 article entitled "The architecture of mathematics," the Bourbaki 

group wrote: "Indeed, every mathematician knows that a proof has not 

been 'understood' if one has done nothing more than verifying step by 

step the correctness of the deductions of which it is composed, and has 

not tried to gain a clear insight into the ideas which have led to the 

contruction of this particular chain of deductions in preference to every 

other one." 

There is an anecdote that goes as follows: In October of 1903, the 

American mathematician Cole delivered a "wordless speech" to the 

American Mathematical Society. He wrote the following two lines on the 

blackboard: 

2 67 - 1 = 147, 573, 952, 589, 676, 412, 927 

193, 707, 721 X 761, 838, 257, 287 

and then proceeded to carry out the multiplication of the second line to 

show that the product was exactly the number on the right hand side of 

the first line. What he had proved was that 2 67 
- 1 was a composite 

number, thus disproving a long-held belief that it was prime. Not one 

word was spoken, and when he put down the chalk, thunderous applause 

broke out. When he was asked later how long it had taken him to 

complete this work, his reply was "all the Sundays in the last three years." 

While we admire Cole for his perseverance, we feel nevertheless that 

his proof does not further our insight into the problem, it does not 

enlighten as the Russian mathematician Manin says a good proof should: 



"A good proof is one which makes us wiser." It is just like the solution to 

Pell's equation 

~1+1141x(30,693, ... ,208) = 1,036, ... ,215: 

it simply does not increase our understanding of the equation 

x 2
- dy = 1. 

Let me emphasize this point further by telling you Gauss' work in 

proving the law of quadratic reciprocity. As for the significance of this 

law, suffice it to say that Gauss attached so much importance to it that 

he called it "the gem of number theory." First we need to know what 

quadratic residue is. Let a and m be relatively prime positive integers 

(i.e., they have no common factors except I). If there is a positive integer 

x such that when a and x2 are divided by m the remainders are the 

same, then we say that a is a quadratic residue mod m. If such an x 
does not exist we say that a is not a quadratic residue mod m. For 

example, 3 is a quadratic residue mod 11 since the remainder of 

· 5 2 + II is 3; but II is not a quadratic residue mod 3 since the remainder 

of 11 + 3 is 2 whereas the remainder of any perfect square divided by 

3 is either 0 or 1. 

Considering only a and m that are odd primes, we indicate in the 

following table (Figure 7a) the values of a (down) that are (are not) 

quadratic residues mod m (across) by a black (white) square (the square 

corresponding to a= mare marked by X). 

Now, arranging the numbers a and m by placing the primes of the 

form 4t + 3 before those of the form 4t + 1, we notice something quite 

curious: the table is symmetric about the diagonal except for the upper 

left hand corner (a and m of the form 4t + 3 ranging from 3 to 83) which 

is anti-symmetric (see Figure 7b). This beautiful observation is the content 

of the Jaw of quadratic reciprocity. Back in 1783, Euler had already 

mentioned a result equivalent to it and around the same time, Legendre 

gave an explicit formulation of this theorem and attempted a proof. The 

first successful prooL due to Gauss, came only in 1796. After this, Gauss 

gave five more proofs of the theorem, the last one published in 1818, 

twenty years after the first! Through the six different proofs, Gauss 

revealed the different facets of the theorem, thereby deepening our 

understanding of number theory and illuminating the way to further 

research. 

In 1963, the American mathematician Gerstenhaber published a 

one-page paper in the American Mathematical Monthly, jocularly giving 

it the title "The 152nd proof of the law of quadratic reciprocity." More 

recently (in 1990)- the same journal published yet another half-page 

paper entitled "Another proof of the quadratic reciprocity theorem?" by 

the American mathematician Swan. Surely, if the sole purpose of a proof 

is to verify, then one, or at most two, will do. Why then would the best 

mathematicians waste their time to give proof after proof of the same 

theorem? 

Figure 7a 

Figure 7b 
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Epilogue 

In this article, we tried to provide the reader with glimpses of the 

human cultural activity that is mathematics. We did not, and never 

intended to, give any answers, hoping only that the reader would now 

agree that mathematics is not just a dry exercise in symbols and logic. It 

would be quite difficult, and indeed, possibly impossible, to define what 

mathematics is - it would depend on the individual's personal 

experiences. Let me end by quoting the famous mathematician and 

mathematics educator Polya: "Mathematical thinking is not purely 
'formal'; it is not concerned only with axioms, definitions, and strict 

proofs, but many other things belong to it: generalizing from observed 

cases, inductive arguments, arguments from analogy, recognizing a 

mathematical concept in, or extracting it from, a concrete situation." 


